Thursday, 2 July 2015

TransCAD and GIS Technique for Estimating Traffic Demand and Its Application in Gaza City

Transportation planning relies on traffic demand forecasting process. The conventional process is impeded by extensive amount of socioeconomic data. One of the most widely-used models which mitigate this problem is the TransCAD Model. This model is rarely used in Gaza Strip for traffic demand forecasting, and most of the practices depend mainly on a constant growth rate of traffic. Therefore, the main objective of this research is to apply this model in Gaza City for traffic estimation. This model estimates the origin-destination matrix based on traffic count. The traffic count was carried out at 36 intersections distributed around Gaza City. The results of traffic flow estimation obtained from TransCAD are assigned to the Gaza maps using the GIS techniques for spatial analysis. It is shown that the most congested area at present is the middle of the city especially at Aljala-Omer Almokhtar intersection. Therefore, improvement scenarios of this area should be carried out. The results of calibration of traffic flow estimation show that the differences between the estimated and the actual flows were less than 10%. In addition, network evaluation results show that the network is expected to be more congested in 2015. This work can be used by transportation planners for testing any network improvement scenarios and for studying their network performance.

Seismic Response and Stability Analysis of Single Hinged Articulated Tower

Offshore structures subjected to wave, earthquake or wind loads or a combination of these loads show non-linear transient behaviour. As oceanic waves are better modelled as stochastic process, there is a need to investigate the stochastic stability of flexible offshore structures as well. Present study has been carried out to determine seismic response of Single Hinged Articulated Tower (SHAT) under different categories of wave loads and earthquake followed by its dynamic stability analysis. Different phases of wave/earthquake loading on SHAT have been explored to investigate dynamic instabilities existing during each phase. Two dimensional phase plots have been used to identify phases of dynamic instability existing within the responses of SHAT under various conditions of loading.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Influence of the Elastic Modulus of the Soil and Concrete Foundation on the Displacements of a Mat Foundation

The objective is to highlight the soil-structure interaction particularly the influence of the rigidities of the soil and the concrete on the subgrade reaction (k) and the displacements of the mat foundation subjected to vertical loads. From plate theory and the soil-structure interaction, the general equation is reached. This equation depends more on the subgrade properties than the concrete foundation properties. Consequently, the behavior of the mat foundation is more influenced by soil properties than the concrete.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Safety Assurance for Challenging Geotechnical Civil Engineering Constructions in Urban Areas

Safety is the most important aspect during design, construction and service time of any structure, especially for challenging projects like high-rise buildings and tunnels in urban areas. A high level design considering the soil-structure- interaction, based on a qualified soil investigation is required for a safe and optimised design. Due to the complexity of geotechnical constructions the safety assurance guaranteed by the 4-eye-principle is essential. The 4-eye-principle consists of an independent peer review by publicly certified experts combined with the observational method. The paper presents the fundamental aspects of safety assurance by the 4-eye-principle. The application is explained on several examples, as deep excavations, complex foundation systems for high-rise buildings and tunnel constructions in urban areas. The experiences made in the planning, design and construction phases are explained and for new inner urban projects recommendations are given.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Experimental Behavior of Partially Prestressed High Strength Concrete Beams

 It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility; it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

3-D Modelling of the Confederation Bridge Using Data of Full Scale Tests

Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Similarity Study on Snowdrift Wind Tunnel Test

The model for snowdrift wind tunnel test needs to be similar with the prototype. Based on detailed analysis in aspects of geometry, kinematics and dynamics, the major similarity parameters that need to be satisfied are gained. The contradiction between the Reynolds number and Froude number as well as the problem of time scale is introduced, and the selections of the model parameters are specified. Lastly, an example of snowdrift wind tunnel test by adoption of quartz sand as the model of snow grains is presented. The flow field and the snow distributions on a typical stepped roof were investigated. The results show that the flow filed characters are in good agreement with the field observations, and the stepped roof snow depth distributions are basically consistent with the observation results.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/