Sunday, 28 June 2015

Analysis of the Probability Model of Wind Load on the Offshore Wind Turbine

According to the actual measurement data, probability models of horizontal wind load were obtained based on wind velocity statistic and power spectral density function of fluctuating wind velocity through stochastic sampling and using spectrum analysis method. Through the comparison of two models, probability models of horizontal wind load based on probability models of fluctuating wind velocity were obtained by revising the mean and variance of fluctuating wind velocity. Results show that the variance takes lower value when the power spectral density function of fluctuating wind velocity is used to obtain the probability model of horizontal wind load. The quadratic term of fluctuating wind velocity takes a small contribution value in total wind load with almost no contribution to the model of horizontal wind load. It is convenient for practical engineering to obtain the models of horizontal wind load by using probability models of fluctuating wind velocity.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Influence of Mechanical Properties of Concrete and Soil on Solicitations of Mat Foundation

This work studies the influence of mechanical and geometrical characteristics of the concrete and the soil on the stresses in a mat foundation. In this study, the soil-structure interaction is modeled by two parameters, the modulus of subgrade vertical reaction (k) and the modulus of subgrade horizontal reaction (2T). These two parameters are dependent on the geometrical and mechanical characteristics of the system. Results of this study show a sensitivity of solicitations to variations of geometrical and mechanical characteristics of the model. Although solicitations in the plate are sensitive to mechanical properties of concrete, these solicitations are strongly influenced by the mechanical and geometrical characteristics of the soil mass. However, it should be noted that the influence of Eb is denoted in the center of the plate whereas the Es feels almost in the same manner over the entire extent of the plate. This study also shows that for the same load cases, the values of the torsion moment and shear stress are not significant those of bending moments and normal stresses, respectively.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Compressive and Flexural Behaviour of Unstressed Concrete Substructure in Cassava Effluent Contaminated Soils

Concrete research is gradually shifting from the conventional strength-based approach to durability-centred in the past decade. Durability is the measure of the robustness of constructed facilities against deterioration tendencies. The rate of deterioration is affected by the loading condition, and more importantly the physical and chemical nature of the host environments. This paper reports the experimental investigation of unstressed concrete substructure in the natural (uncontaminated) and cassava’s hydrocyanide effluent-polluted soils on the compressive and flexural strengths of buried concrete specimens for a maximum of 84 days. The compressive strengths of the cubes were tested every 7 days until the 84th day, while the beams were only subjected to third-point loading flexural tests at age 84 days. The compressive strength of concrete specimens in the two soil environments increased, though the trend was lower in the polluted soil. The strength reduced by 2.50% to 9.47% between the 7th and 28th days, but steadily between the 28th and 84th days with strength loss of 9.95% (COV = 2.64%). The load-deflection curves were quadratic for the beams in the two geo-environments. The beams in cyanide-polluted soil lost 34.5% of its flexural stiffness, while its loss of load-carrying capacities at the first crack and ultimate failure was 15.8% and 20% respectively. Higher degree of deterioration is certain for loaded concrete substructures in similar conditions. Hence, prior knowledge of soil chemistry is crucial to determining suitable concrete grade and nominal cover for durable substructural elements.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Comparative Studies of Steel, Bamboo and Rattan as Reinforcing Bars in Concrete: Tensile and Flexural Characteristics

Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Computational Finite Element Modelling of Structural Behaviours of Precast Sandwiched Foamed Concrete Slab

The structural behaviour of Precast Lightweight Foamed Concrete Panel (PLFP) under flexural load is investigated by using ABAQUS 6.13. The PLFP is made up of two Whyte’s with a polystyrene insulator placed in between them using a double shear truss connector of diameter 6mm placed at an angle 45°. The panel is reinforced with both vertical and horizontal steel reinforcement of 9 mm diameter. Four panels with varying dimensions are simulated to investigate their Ultimate Strength and Load-deflection profile. The results show that the length to thickness ratio of the panel is the major contributing factor to the ultimate strength of the PLFP. From the load deflection curve, the panel with the least deflection has the highest thickness which also results in a high ultimate strength recorded at 34.43 KN.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Effect of Using Stone Cutting Slurry Waste (Al-Khamkha) on the Compaction Characteristics of Jerash Cohesive Soil

This water carries large amounts of stone powder, which leads to complex nature of environmental problem so these waste material needs to be utilized meaningfully in economic way. The degree of compaction of a soil is measured in terms of its dry unit weight Al-Khamkha mixed with Jerash cohesive soil at different amount ranges from 0%, 5%, 10%, 15%, up to 50% and compaction characteristics of Jerash cohesive soil without and with different amount of Al-Khamkha was studied. This investigation show that as the amount of Al-Khamkha increase from 0% to 15%, the dry unit weight of Jerash cohesive soil increase from 14.4 KN/m3 at 0% of Al-Khamkha to 16.5 KN/m3 at 15% and after that .any increase of Al-Khamkha decrease the dry unit weight. On the other hand, the optimum water content of the Jerash cohesive soil was increases with increasing the percentage of Al-Khamkha on the cohesive soil.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Effects of Building Configuration on Seismic Performance of RC Buildings by Pushover Analysis

These existing reinforced concrete buildings need to be evaluated to determine the capacity to resist seismic loads. The behavior of a building during earthquakes depends critically on its overall shape, size and geometry. Conventional approach to earthquake resistant design of buildings depends upon providing the building with strength, stiffness and inelastic deformation capacity which are great enough to withstand a given level of earthquake-generated force. This is generally accomplished through the selection of an appropriate building configuration and the careful detailing of structural members. In this research, nonlinear pushover analysis has been used to evaluate the seismic performance of three buildings with three different plans having same area and height. This method determines the base shear capacity of the building and performance level of each part of building under varying intensity of seismic force. The results of effects of different plan on seismic response of buildings have been presented in terms of displacement, base shear and plastic hinge pattern.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Evaluation of Water Distribution Jointed Pipe Networks under Transient Ground Motions

a new method is proposed to evaluate the seismic behavior of buried jointed water pipeline networks subjected to wave propagation. First, using finite element method and solid elements, different kinds of currently used connections in the network are modeled, and their nonlinear behavior in all directions is obtained. Second, a 950-meter long network consisting of ductile iron pipes segments of 6-meter length and springs characterizing the connections, are modeled using beam elements. Three-component displacement record of the Tabas earthquake is applied to the network considering the time lag between support inputs, and the nonlinear soil-pipe interaction. The record is applied once in North-South direction and once in East-West direction with different wave propagation velocities. Results of interest such as stress values and rotations at various points of the network are then obtained, and critical points are introduced in each direction. Results show that the points other than the critical ones at the network intersections remain elastic.

Website:  http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Applications and Prospects of Fiber Reinforced Concrete in Industrial Floors

Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40% - 50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20% - 30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30% - 40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/

Seismic Capacity Assessment of Existing RC Buildings in The Sudan by Using Pushover Analysis

The evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.

Website: http://www.arjonline.org/engineering/american-research-journal-of-civil-and-structural-engineering/